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The far-field description of the flow produced by a source of both momentum and
mass is given in the form of a coordinate expansion. The first term of the expansion
corresponds to the classical self-similar solution first written by Landau. The next
two terms, associated with the non-zero rate of mass, are found in the paper.

1. Introduction
The existence of self-similar solution of the Navier–Stokes equations with the

velocity decreasing as 1/r was first shown by Slezkin (1934). Landau (1944) revealed
that this solution describes the steady flow induced by a point source of momentum
placed in an unbounded fluid at rest; see Landau & Lifshitz (1987, § 23), or Sherman
(1990, § 9.4), for details. Seven years after Landau, Squire (1951) published the same
solution, together with the solution of the corresponding problem when the source is
also a point source of heat. Thereafter, this solution is referred to frequently as the
Landau–Squire one (LS below) in the fluid mechanics literature.

The LS-solution has been developed in the literature. The analysis of the transient
cases, for which the point source of momentum is turned on suddenly at time zero, was
carried out numerically by Sozou & Pickering (1977). Sozou (1979) found an analytic
solution for such a creeping unsteady jet. Unsteady particle trajectories were examined
by Cantwell (1981). Pickering & Sozou (1979) investigated the steady laminar flow
produced by a point source of momentum in a spherical envelope. Recently, the
steady flow due to a point force arose in the study of thermocapillary convection
produced by a stationary bubble in a linear temperature field, see Balasubramaniam &
Subramanian (2004).

If the size of the source is finite, the classical LS-result becomes the first term of
an expansion in powers of the ratio of this size to the distance from the source. It is
well known that the total mass flux through a closed surface surrounding the origin
calculated from the LS-solution is zero. An attempt to incorporate the non-zero mass
rate in the far-field description was first made by Rumer (1953), who used for this
purpose the next term in the asymptotic coordinate expansion (as cited in Landau &
Lifshitz 1987, § 23, p. 83). A revision of the solution obtained by Rumer reveals
unremovable logarithmic singularities of the velocity field at the axis, and made it
necessary to reconsider this problem.

2. Formulation
Consider a steady flow induced by a source of both momentum, of intensity J ex ,

and mass, of intensity M , placed in an unbounded environment of the same fluid with
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the density ρ and the kinematic viscosity ν. It is assumed in this study that there are
no losses of momentum. One might imagine a tiny tube emerging from the fluid with
slip velocity conditions at its outer surface or, for example, a porous spherical ball,
fixed in space, with a non-uniform surface velocity distribution to provide a non-zero
momentum flux in some direction. This paper deals with the far-field description of
such flows and the near-field details do not affect the form of the far-field solution in
first approximations†, as we will show below.

The resultant flow field is assumed to be axisymmetric and a system of spherical
coordinates with the radial coordinate r ′ measured from the source and the angle
θ measured from the direction of the momentum ex is used to describe the flow,
0 � θ � π. To account for the source we require two conditions: that the conservation
of momentum,

J = 2πr ′2
∫ π

0

{
ρVr (Vr cos θ −Vθ sin θ)+p cos θ −τrr cos θ +τrθ sin θ

}
sin θ dθ, (2.1)

and the conservation of mass,

M = 2πr ′2
∫ π

0

ρVr sin θ dθ, (2.2)

are satisfied at large r ′. Here τrr and τrθ are the components of the stress tensor.
Let us define the characteristic length and velocity using the relations M = 2πρUcl

2
c

and Uc = ν/lc, namely

lc =
M

2πρν
, Uc =

2πρν2

M
, (2.3)

and measure the pressure field using ρU 2
c . In the above mentioned case of tube

emerging the jet, lc = aRe/2, where Re is the Reynolds number of the tube flow based
on the average velocity and the tube radius a.

Using lc and Uc as scales for the spatial coordinates and for the velocity, K =
J/2πρν2 remains the only parameter entering in the far-field description. Introducing
the non-dimensional stream function ψ (measured using ψc = M/2πρ), the governing
Navier–Stokes equation written in terms of r = r ′/lc and ζ = cos θ takes the form

1

r2

∂(ψ, D2ψ)

∂(r, ζ )
+

2D2ψ

r2

(
ζ

1 − ζ 2

∂ψ

∂r
+

1

r

∂ψ

∂ζ

)
= D4ψ, (2.4)

where

D2 =
∂2

∂r2
+

1 − ζ 2

r2

∂2

∂ζ 2
.

Here the stream function is defined by

Vr = − 1

r2

∂ψ

∂ζ
, Vθ = − 1

r
√

1 − ζ 2

∂ψ

∂r
.

The value −D2ψ/r
√

1 − ζ 2 is the azimuthal component of the vorticity.

† More precisely, in approximations considered the near-field details affect only the value of C1

appearing in (3.12).
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Equation (2.4) needs to be supplemented by the following boundary conditions at
the axis:

ψ |ζ=−1 = 1, ψ |ζ=1 = 0, lim
ζ→±1

√
1 − ζ 2

∂2ψ

∂ζ 2
= 0. (2.5)

The first and the second conditions represent the conservation of mass (2.2). The
last condition in (2.5) can be substituted by the requirement that radial velocity,
proportional to ∂ψ/∂ζ , is finite at the axis, ζ = ±1.

3. Asymptotic solution for r � 1

The LS-solution describing the point source of momentum with zero mass rate,
M = 0, is the exact solution of (2.4)–(2.5) valid for all r . In terms of the stream
function it takes the form

ψ = rf0(ζ ), with f0 = 2(1 − ζ 2)/(A − ζ ), (3.1)

where constant A is related to K = J/2πρν2 by the relation

K = 8A

(
1 +

4

3(A2 − 1)
− 1

2
A ln

A + 1

A − 1

)
, 1 <A< ∞, (3.2)

see Landau & Lifshitz (1987). In what follows the constant A being used, instead of
K , to characterize the flow field.

We should remark here that in spite of M being used to define the length scale lc,
the dimensional stream function ψ ′ describing the point source of momentum with
zero mass rate remains independent of M ,

ψ ′ =
M

2πρ

(
r ′

lc

)
f0(ζ ) = νr ′f0(ζ ), (3.3)

as it should be, where r ′ is the dimensional radial coordinate.
Consider the far flow field produced by the momentum source with non-zero M .

To describe the asymptotic solution at large r the following coordinate expansion is
suggested at r � 1:

ψ = rf0(ζ ) + ln(r)f1(ζ ) + f2(ζ ) + · · · , (3.4)

where the first term is given by the LS-solution (3.1). Notice that in the expansion
proposed in Rumer (1953) the term proportional to ln r was not included. Substituting
(3.4) into (2.4) and equating the same order terms of the orders of r−4 ln r and r−4

provides equations (A 1) and (A 2), respectively, given in the Appendix. Using the LS-
solution (3.1) the homogeneous equation (A 1) written in terms of h1 = f I

1 becomes

a1h1 + a2h
I
1 + a3h

II
1 + a4h

III
1 = 0, (3.5)

where the coefficients ai are also given in the Appendix. Equation (3.5) is to be solved
with the only condition that h1 is finite at the axis, ζ = ±1.

It was found that equation (3.5) has the unique general solution regular at the axis
which, aside from a constant factor, is of the form

H1 =
A2 − 2 + 3ζA − 3ζ 2A2 + ζ 3A

A(ζ − A)3
. (3.6)
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The other two general solutions H2 and H3, given in the Appendix, both have
logarithmic singularities at the axis. Then, h1 is given by

h1 = CH1, (3.7)

where the constant C remains undetermined in the frame of this approximation. It is
easily seen that ∫ 1

−1

H1 dζ = 0 (3.8)

and the second term in (3.4) does not contain the mass, as it should due to its
logarithmic with r behaviour. In terms of the stream function the solution is

f1 = C
(1 − ζ 2)(1 − Aζ )

A(ζ − A)2
. (3.9)

The calculation of constant C requires consideration of the next order term, f2, in
(3.4).

Using (3.1) and (3.9) in (A 2) gives

Ca0 + a1h2 + a2h
I
2 + a3h

II
2 + a4h

III
2 = 0, (3.10)

where h2 = f I
2 and a0 is given in the Appendix. The third term in the expansion (3.4)

contains the mass and, then, the condition∫ 1

−1

h2 dζ = −1 (3.11)

needs to be imposed.
The homogeneous part of (3.10) coincides with (3.5). It was found that the particular

solution of (3.10), Hp , together with H2 and H3, has logarithmic singularities at
ζ = ±1. Then, the general solution of (3.10) can be written in the form

h2 = C1H1 + h∗, (3.12)

where

h∗ = C2H2 + C3H3 + CHp (3.13)

denotes the part of h2 that is singular at the axis.
One can now use that the physically acceptable solution for h2 must be regular at

the axis. The main reason to include the term proportional to ln r in the coordinate
expansion (3.4) is to employ the constant C to eliminate the singularity in (3.13). The
following designations are applied below:

S+
j = lim

ζ→1

{
Hj / ln(1 − ζ )

}
, S−

j = lim
ζ→−1

{
Hj / ln(1 + ζ )

}
, S̄j =

∫ 1

−1

Hj dζ, (3.14)

where j = 2, 3 and p. Then, the conditions to remove the axis singularities together
with the mass requirement (3.11) are

C2S
+
2 + C3S

+
3 + CS+

p = 0,

C2S
−
2 + C3S

−
3 + CS−

p = 0,

C2S̄2 + C3S̄3 + CS̄p = −1.


 (3.15)

These conditions determine the value of C, together with C2 and C3, while the
constant C1 in (3.12) remains undetermined. Its value depends on the details of the
flow near the source and can be determined only by matching the asymptotic solution
at large r with the numerical solution at distances r ∼ O(1).
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Figure 1. Computed values of C (solid line) and its asymptotic expansion (3.16)
for large A (dots); dashed line, first two terms of (3.16).

1.5

1.0

0.5

A = 8

A = 3

A = 1.2

–1.0 –0.5 0
ζ

0.5 1.0

0
h*

–0.5

–1.0

Figure 2. Profiles of h∗ calculated for various A.

The partial solution Hp has a very large analytical form and a numerical treatment
was applied in this study. The conditions

Hp(0) = HI
p(0) = HII

p (0) = 0

were used to calculate numerically the particular solution Hp . Clearly that the final
result is independent of this choice. Shown in figure 1 with a solid line are the resultant
values of C plotted as a function of A. Figure 2 shows h∗ calculated for different A,
where the distributions were normalized by the condition hI

∗(0) = 0. This condition
can always be satisfied by adding to h∗, calculated numerically, some fraction of H1,
because HI

1(0) �= 0 for A> 1.
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For A � 1 the value C is given by the expansion

C =
4

5
− 604

525
A−2 +

38468

55125
A−4 − 0.48750A−6 + 0.30037A−8 − 0.20946A−10

+ 0.12789A−12 − 0.090725A−14 + 0.053952A−16 − 0.039681A−18 + · · · . (3.16)

This expansion, calculated analytically and represented in figure 1 with dots, describes
with a high accuracy the numerical results for values of A> 1.02. The first two terms
of expansion (3.16) are plotted in figure 1 with a dashed line. All coefficients in
(3.16) were found in the exact form (as rationales). Nevertheless, the higher-order
coefficients are presented here as approximate decimals for the sake of brevity. First
terms of the h∗-expansion corresponding to (3.16) are given in the Appendix.

4. Constraint on the momentum flux
The far-field coordinate expansion of the stream function (3.4) leads to the following

expansion for the total non-dimensional momentum flux:∫ 1

−1

j0 dζ +
ln r

r

∫ 1

−1

j1 dζ +
1

r

∫ 1

−1

j2 dζ + · · · , (4.1)

where j0, j1 and j2 are given in the Appendix; j0 is the leading term in the local
momentum flux while j1 and j2 represent the first and second corrections to this
value. It is easily seen that the first integral

∫ 1

−1
j0 dζ calculated using (3.1) coincides

with the LS-value (3.2). The goal of this section is to demonstrate that the second
and third terms appearing in (4.1) are both zero, or, equivalently, that the solution
obtained in the previous section really satisfies the constraint on the momentum flux.

The constraint on j1 is easily shown by using (3.1) and (3.6) in

j1 = C
(
2ζf I

0 − f0 − 4ζ
)
H1

and, as we obtained,
∫ 1

−1
j1 dζ ≡ 0.

Integrating equation (A 2) from −1 to ζ gives

(ζ 2 − 1)hII
2 + 2ζhI

2 − 6h2 + (f0h2)
I + 2f I

0 h2 +

∫ ζ

−1

S dζ

= −2hI
2(−1) +

(
3f I

0 (−1) − 6
)
h2(−1), (4.2)

where h2 = f I
2 . Multiplying (4.2) by ζ and integrating again over ζ from −1 to 1

provides the following integral relation:∫ 1

−1

(2ζf I
0 − f0 − 4ζ )h2 dζ =

∫ 1

−1

1

2
(ζ 2 − 1)S dζ. (4.3)

Analytical solutions (3.1) and (3.9) applied in expression (A 9) for j2 reduce the third
integral in (4.1) to the form∫ 1

−1

j2 dζ = C

{
18A2 − 4

A
+(5 − 9A2) ln

(
A + 1

A − 1

)}
+

∫ 1

−1

(
2ζf I

0 − f0 − 4ζ
)
h2 dζ (4.4)

and, as we obtained using (4.3) in order to eliminate h2,
∫ 1

−1
j2 dζ ≡ 0.

5. Conclusions
A far-field description of the flow produced by the source of momentum with non-

zero mass flow rate has been found in terms of the coordinate expansion (3.4). The
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resulting stream function rewritten in the dimensional form,

ψ ′ = νr ′ 2(1 − ζ 2)

A − ζ
+ C

M

2πρ
ln

(
r ′

lc

)
(1 − ζ 2)(1 − Aζ )

A(ζ − A)2
+

M

2πρ
f2(ζ ) + · · · , (5.1)

is valid at distances r ′ � lc = M/2πρν. The leading term in (5.1), found by both
Landau and Squire, has the zero mass rate. The second term needs to be logarithmic
in r in order to eliminate the singularities at the axis appearing in the third term
associated with the non-zero mass flow rate. The third term includes the eigenfunction
part multiplied by a factor dependent on the details of the flow at distances r ′ ∼ lc.

In the coordinate expansion proposed in Rumer (1953) the logarithmic term was
not included, or, equivalently, the value C = 0 was applied. The analysis carried out
in the present paper has shown that this choice leads to the velocity field with
unremovable singularities at the axis in the term responsible for the non-zero mass
rate. Even though the resultant singular velocity field is integrable to ensure a finite
mass rate, such singular behaviour at the axis is unacceptable from the physical point
of view.
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Appendix
Equations determining f1 and f2 in (3.4) are

(ζ 2 − 1)f IV
1 + 4ζf III

1 − 4f II
1 + f0f

III
1 + 4f I

0 f II
1 + 3f II

0 f I
1 = 0, (A 1)

(ζ 2 − 1)f IV
2 + 4ζf III

2 − 4f II
2 + f0f

III
2 + 4f I

0 f II
2 + 3f II

0 f I
2 + S = 0, (A 2)

where

S =
1

ζ 2 − 1

[
(ζ 2 − 1)f III

0 + 4f I
0 − 2ζ

ζ 2 − 1
f0 − 6

]
f1 +

f0

ζ 2 − 1
f I

1 +
(
6 − f I

0

)
f II

1 . (A 3)

The coefficients appearing in (3.5) and (3.10) are

a0 = 2
12A − 9A2ζ + 3A2ζ 3 − ζ 3 − 14A3 − 6A3ζ 2 + 15A4ζ

A(A − ζ )5
,

a1 = 12(1 − A2)/(A − ζ )3 ,

a2 = 4(ζ 2 − 2ζA + 2 − A2)/(A − ζ )2 ,

a3 = 2(−3ζ 2 + 2ζA + 1)/(A − ζ ) ,

a4 = ζ 2 − 1 .




(A 4)

Two singular general solutions of (3.5) are

H2 =
−8 + 20A2 − 18A3ζ + 6ζ 2A2

(ζ − A)3

+
−3A3 + 6A − 9ζA2 + 9ζ 2A3 − 3ζ 3A2

(ζ − A)3
ln

(
1 + ζ

1 − ζ

)
, (A 5)
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H3 =
A2 − 2 + 3ζA − 3ζ 2A2 + ζ 3A

(A − ζ )3

×
∫ ζ

0

(A − ζ )4(ζ 3A − 3ζ 2A2 + 9ζA − 6A3ζ +(−6A4 − 6 + 12A2) ln(A − ζ ))

(A2 − 2 + 3ζA − 3ζ 2A2 + ζ 3A)2(1 − ζ 2)
dζ. (A 6)

The j0, j1 and j2 appearing in (4.1) are

j0 =
1

2
(1 − ζ 2)f II

0 − 2ζf I
0 + 2f0 + ζf I

0
2 − 3

2
f0f

I
0 +

ζ

2(ζ 2 − 1)
f 2

0 , (A 7)

j1 =
(
2ζf I

0 − f0 − 4ζ
)
f I

1 , (A 8)

j2 =
(
2ζf I

0 − f0 − 4ζ
)
f I

2 +

[
−2f I

0 − ζ

1 − ζ 2
f0 + 4

]
f1 +

(
2ζ − 1

2
f0

)
f I

1 + 1
2
(1 − ζ 2)f II

1 .

(A 9)

With the help of the MAPLE program twenty terms of the h∗-expansion corres-
ponding to (3.16) were calculated. Notice that C expands in powers of A−2 whereas
h∗, given below, in powers of A−1. The higher-order terms of the h∗-expansion take
very large forms and the first seven terms are

h∗ =
3

4
(ζ 2 − 1) +

1

A
2ζ 3 +

1

A2

(
15

4
ζ 4 − 27

10
ζ 2 +

3

20

)
+

1

A3

(
6ζ 5 − 22

3
ζ 3

)

+
1

A4

(
35

4
ζ 6 − 489

35
ζ 4 +

17699

4200
ζ 2 +

1759

12600

)
+

1

A5

(
12ζ 7 − 9503

420
ζ 5 +

11969

1050
ζ 3

)

+
1

A6

(
63

4
ζ 8 − 7193

216
ζ 6 +

955783

44100
ζ 4 − 802351

220500
ζ 2 − 16819

147000

)
+ · · · . (A 10)

The first term in (3.16), C = 4/5, corresponds to the first three terms of (A 10).
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